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* Proposed methodology

* Training data

* Results

* Future work
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ACaM

* Limitations of Travel Demand Models
» Fail to capture rapid short-term trends.
» Aggregate inputs and fixed response functions.
* Limitations of Time-Series Deep Learning Models
= Work only when the network is stationary.
= Performance drops when capacity changes.
* Hybrid Framework
= Combine historical observations (i.e., demand changes) for real temporal patterns with
= CUBE simulations (i.e., network changes) for counterfactual scenarios (e.g., capacity changes).
* Qutcome

* Link-level volume and revenue forecasts under dynamic network conditions.
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Methodology Overview "4C&M
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1. Apply capacity changes at corridor and global network level to perform CUBE simulations
2. Assign corresponding A—B nodes from network with historical transactions/gantries

Generate and normalize features across both datasets

Jointly train temporal and spatial encoders with a single decoder under a unified loss

Evaluate performance using observed data holdout and holdout with unseen capacity
changes.
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Methodology Overview 'IC&M
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* Existing Literature
= DCRNN'’s graph diffusion + RNN encoder-decoder
= STGCN’s graph conv + gated TCN
= Graph Transformers
= Separate space and time modules

* Cross-domain feature alignment:
= We used two transformer blocks (one spatial, one temporal encoder) tied by a shared MLP decoder.
= Produce a single latent representation for both historical and simulation inputs.

= This enables weighting of these evidence sources during forecasting.

* Architectural scalability:
= Supports varying network sizes, time resolutions, and forecasting windows without redesign.

= Makes it practical for corridor-level, region-level, or systemwide applications.
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Datasets — Historical Traffic and Revenue IC&M

* Detailed 1-minute transaction and toll revenue data for gantries along major express
lane corridors in the Northern Virginia Area, from Jan 2019 to Jun 2025.

Tolled Volume

Toll Revenue (Nominal $)

Jan-19  Jan-20 Jan-21  Jan-22 Jan-23  Jan-24  Jan-25 Jan-26
Jan-19 Jan-20 Jan-21 Jan-22 Jan-23 Jan-24 Jan-25 Jan-26

Tolled Transactions Toll Revenue
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September 15, 2025

* 500 random capacity change scenario runs over a subarea of 2019 year calibrated
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Datasets — Socioeconomic Data IC&M

WFH Rate

* All data corresponds to
the project area
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Spatial Validation H'l\C&M

Comparison of percentage change in volume compared to Base Scenario under capacity change

* Validated on 64 capacity
change scenarios

* Av. Diff. between model
predicted and CUBE
predicted scenarios not
used during training was
3.4% MAPE, indicating
strong robustness to
network perturbations

* Highest error for a link
observed at 10.03% MAPE.

CUBE Hybrid Graph Transformer
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Temporal Validation (Traffic Volumes) mﬂcr&M

Comparison of Predicted Volume compared to Observed Historical under demand change
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Temporal Validation (Revenues) F&ACT&M

Comparison of Predicted Revenue compared to Observed Historical under demand change
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More real-world validation

= Create capacity-change scenarios reflecting observed impacts: phased lane closures, temporary reversible lanes, ramp
detours, and traffic pattern shifts.

Test performance on other architectures:
= DCRNN’s graph diffusion + RNN encoder-decoder
= STGCN'’s graph conv + gated TCN

Support downstream optimization (e.g., maximizing throughput or revenue)

Mid-term to long-term forecasting

e
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* The proposed framework explicitly handles joint demand and network changes:
= Robust short-term forecasting
= Credible what-if analysis under capacity changes

* This method:

= Scales to larger multi-facility networks
= Can be fine-tuned using real-world capacity change/network scenarios
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Questions/Comments

Yugesh Naidu — Transportation Systems Modeler

ynaidu@candm-associates.com



