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Overview

• Limitations of current forecasting methods

• Proposed methodology

• Training data

• Results

• Future work
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Introduction

• Limitations of Travel Demand Models

▪ Fail to capture rapid short-term trends.

▪ Aggregate inputs and fixed response functions. 

• Limitations of Time-Series Deep Learning Models

▪ Work only when the network is stationary. 

▪ Performance drops when capacity changes.

• Hybrid Framework

▪ Combine historical observations (i.e., demand changes) for real temporal patterns with 

▪ CUBE simulations (i.e., network changes) for counterfactual scenarios (e.g., capacity changes).

• Outcome

▪ Link-level volume and revenue forecasts under dynamic network conditions.
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Methodology Overview
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Methodology Overview

Hybrid Graph Transformer
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Model Architecture

• Existing Literature
▪ DCRNN’s graph diffusion + RNN encoder-decoder

▪ STGCN’s graph conv + gated TCN

▪ Graph Transformers

▪ Separate space and time modules

• Cross-domain feature alignment: 
▪ We used two transformer blocks (one spatial, one temporal encoder) tied by a shared MLP decoder.

▪ Produce a single latent representation for both historical and simulation inputs.

▪ This enables weighting of these evidence sources during forecasting.

• Architectural scalability: 
▪ Supports varying network sizes, time resolutions, and forecasting windows without redesign.

▪ Makes it practical for corridor-level, region-level, or systemwide applications.
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Datasets – Historical Traffic and Revenue

Tolled Transactions Toll Revenue

• Detailed 1-minute transaction and toll revenue data for gantries along major express 
lane corridors in the Northern Virginia Area, from Jan 2019 to Jun 2025.
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• 500 random capacity change scenario runs over a subarea of 2019 year calibrated 
travel demand model’s subarea network:
▪ 11,704 edges and 5,973 nodes

▪ Corridor-level changes

▪ Global changes

Datasets - CUBE simulations

Global Group Corridor Group



SHORT-TERM TRAFFIC AND REVENUE FORECASTING UNDER NETWORK AND DEMAND CHANGES September 15, 2025 9

Datasets – Socioeconomic Data

* All data corresponds to 
the project area

Employment Unemployment Rate

Work-From-Home Rate
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Spatial Validation

Comparison of percentage change in volume compared to Base Scenario under capacity change

CUBE Hybrid Graph Transformer

• Validated on 64 capacity 
change scenarios

• Av. Diff. between model 
predicted and CUBE 
predicted scenarios not 
used during training was 
3.4% MAPE, indicating 
strong robustness to 
network perturbations

• Highest error for a link 
observed at 10.03% MAPE.
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Temporal Validation (Traffic Volumes)

• Validated on 64 days of historical 
data across 4 gantries. 

• Av. Diff. between predicted vs 
actual gantry volumes was 9-10% 
MAPE, indicating strong 
robustness to temporal variations

Comparison of Predicted Volume compared to Observed Historical under demand change
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Temporal Validation (Revenues)

• Validated on unseen 64 days 
of historical data across 4 
gantries

• Av. Diff. between predicted 
and actual gantry revenues 
was 8-11% MAPE, indicating 
strong robustness to temporal 
variations

Comparison of Predicted Revenue compared to Observed Historical under demand change
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• More real-world validation
▪ Create capacity-change scenarios reflecting observed impacts: phased lane closures, temporary reversible lanes, ramp 

detours, and traffic pattern shifts.

• Test performance on other architectures: 
▪ DCRNN’s graph diffusion + RNN encoder-decoder 

▪ STGCN’s graph conv + gated TCN

• Support downstream optimization (e.g., maximizing throughput or revenue)

• Mid-term to long-term forecasting

Next Steps
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• The proposed framework explicitly handles joint demand and network changes:
▪ Robust short-term forecasting

▪ Credible what-if analysis under capacity changes

• This  method:
▪ Scales to larger multi-facility networks

▪ Can be fine-tuned using real-world capacity change/network scenarios

Conclusions
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