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CONTEXT OF FHWA TMIP PROJECT .‘. a

* Acknowledgement and thanks for FHWA
sponsorship of this important work

a¥

" Part of larger project to improve travel forecasting
through the use of big data and Al
— Review of literature and practice
— Testing new methods
— Implementation pilot projects with case studies
— “Playbook” for incorporating Al in travel models
— TMIP webinars to promote Playbook methods
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PROJECT FOCUS

=" Focus on Al

— References to TMIP resources on big data

" Focus on Practical Improvements
for the Near- to Mid-Term

— Methods to improve/replace

individual model components -
— AI-DCMs
— Primary focus on Destination Choice .
* Largest source of error in existing models OW - .

— largest opportunity for improvement

Explanatory Power

Gravity Logit DeepGravity
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Al-DCM MODELS

= Artificial Intelligence — Discrete Choice Models

= Combine neural networks and logit models

= Attempt to combine the best of both traditional and newer

methods
— Theoretical basis and interpretability of traditional models

— Explanatory power and accuracy of Al

= Six types proposed so far

— L-MNL — TasteNet
— ResLogit — RUMnets
— TB-ResNet — e-Logit
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TB-RESNETS
= Ensemble of Logit and Deep NN "7, 7T

" Interpretable as a logit or DNN

| i [ tility Theory

= Utilities weighted average of logit B
and DNN |

" Weight estimable from data
; |
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Fig. 2. Utility functions of MNL-ResNets, MNL, and DNNs. Upper row: visualization of 2D

utility functions, and percentages in the parentheses represent the prediction accuracy. Lower row:
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LITERATURE REVIEW
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LITERATURE REVIEW

* |[dentified 354 papers from 1993 to present

* Explosion of papers from 2016, peaking in 2020,
stabilized around 2018-19 levels

* Needed to prioritize, mostly based on citation rates
= Cursory review of 123 papers and |8 surveys/reviews

* Report summarizes 34 papers
— Plus, a brief overview of |5 early papers
— And appendix with |3 paper summaries

= |dentified 8 branches of the literature
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BRANCHES OF THE LITERATURE

1993

= Eight branches of the literature

— Based on citations, but vary across many

dimensions

o

2018

2019

2020

oy
© {2021

2022

2023

2024

Caliper’

TransCAD | TransModeler

15




BRANCHES METHODOLOGICAL FOCUS
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MODEL-BASED
META-ANALYSIS
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HOW TO COMPARE MODELS?

= 22 different metrics reported Type  Nomalized *"oFer®
— |4 goodness-of-fit metrics RMSE Eror Mo
k-Recall/ HR Fit Yes 21.1%
— 8 error metrics k-Accuracy Fit Yes 20.2%
MAE Error Mo 13.8%
o . R2 Fit Yes 12.8%
= Assumption: Lok
R . . . k-Precision Fit Yes 10.1%
— Relative Improvement in fit or k-NDCG Fit Yes 8.3%
. F1/DSC Error Yes 9.2%
decrease in error are comparable, MAPE Error Yer %
though not identical, MSE Error No 7.3%
. . MRR Fit Yes 7.3%
regardless of fit / error metric used AUC Fit Yes 6.4%
ARV Error No 6.4%
[ . Distance Fit Yes 5.5%
AP P roa‘c h ® 15D Fit Yes 3.7%
. . MAPE Fit ¥ 3.7%
— Model a latent generic fitness measure <MSE o e o
which minimizes squared error between L Ertor | Yas
k-Top Fit Yes
modeled and published relative comparisons WMAPE Eror  Yes
k-DCG Fit Mo
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LATENT FITNESS MODEL

" Latent fitness score defined on unit interval [0, 1]

= Binary logit model
— Model specific constant

— 10 methodological dummy variables

* FCN * Attention

* RNN * Embeddings
* CNN « SSL

* GNN * LLM

* GCN * GAN

= LSE with regularization term

— (squared difference from initial score calculated as normalized average of ratio
of model’s goodness-of-fit to other models)
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DATA CONSTRUCT

. . . . % Papers % Comparisons

u I2 metrlcs used In meta-anaIYSIS Type  Normalized Reporting in Meta-Analysis
P f f I . d RMSE Error No 9.4%

| k-Recall / HR Fit Yes 21.1% 12.7%
rererence 1or normalize S Yee 2 o I

— 78% normalized used in meta-analysis A Bror e o Y

. . k-MAP Fit Yes 11.0% 0.0%

— Highest preference for metrics cPrecision | Fit  Yes 10.1% 2.4%

. o e k-NDCG Fit Yes 8.3% 0.0%

normalized on the unit interval F1)Dse Eror | Yes 0.2% 655

MAPE Error Yes 1.3% 8.0%

| . MSE Error No 7.3% 0.0%
Observed Data' MRR Fit Yes 7.3% 0.0%

. . AUC Fit Yes 6.4% 4.1%

— 629 relative comparisons ARV Eror  No 6.4% 0.0%

. . Distance Fit Yes 5.9% 2.2%

— Published in 81 papers f v (e am
sMAPE Fit Yes 3.7% 3.3%

— Which used 176 datasets swse m v (2 o

LL Error Yes 0.0%

k-Top Fit Yes 0.0%

WMAPE Error Yes 0.0%

k-DCG Fit Mo 0.0%
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MODELED SCORE RATIOS VS. PUBLISHED

Caliper’
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META-ANALYSIS RESULTS

= Best methods

- GAl
* GAN
* LLM

— SSL
- GCN

= Small Sample Size for best

~ GAI (8)
— SSL (6)
~ LLM (3)

Utility

Coefficient Factor Avg. Score
FCN -0.111 0.89 0.37
RNN -0.230 0.78 0.3
CNN 0.014 1.01 0.41
GNN 0.046 1.05 0.39
GCN 0.066 1.07 0.44
Attention -0.155 0.86 0.45
Embeddings -0.162 0.85 0.41
S5L 0.110 1.12 0.43
GAN | 1790 [ 599 | o079 |
LLM 0.518 1.68 0.66
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RECOMMENDATIONS FOR
NEXT PHASE
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PERFORMANCE MEASUREMENT

" Importance of Out-of-Sample (Holdout Sample) Validation

— Standard practice of good data science

— Extremely rare in travel forecasting practice
— Key opportunity to improve the practice

- Choice Of Metric . Information Loss in Log Likelihood

Log Likelihood| -1.85|-1.85
Wasserstein Distance| 1.63| 1.20

II ul lI |I ' I II
B € D E F G H
M Observed MDistribution 1 m Distribution 2

— Huge variety of error
| goodness-of-fit metrics

— Minimum Wasserstein distance

* Powerful in computer vision, with CNNs

* Gives credit for getting close




NOW TESTING

* Recommended models for testing in AI-DCMs
— GAN: MoveSim/TrajGAN, highest scores
— SSL GCN: STHGCN, #7 highest score, highest non-GAl, high confidence
— MLP/FCN: DeepGravity, reference, average performance with minimal complexity

Atten | Embe
Rank|Model Paper
1|MoveSim Feng et al. {2020a)
2|TrajGAN Ouyang et al. (2018)
J|COLA Wang et al. (2024)
4|LLM4POI Lietal. (2024)
5|Geo-ALM Liu et al. (2019k)
6|LLMove Feng et al. (2024)
7|STHGCN Yan etal. (2023)
8|CatDM Yu et al. (2020)
9|EEDN Wang et al. (2023k)
10 |DRAN Wang et al. (2022hk)
43 |DeepGravity [3imini et al. (2021)
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1993
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1998 AG | A A8 N/ \

1999 - ‘.. / /

o I NSRS 7 a 7

- o — /| = Branch A
2006 / \ ]\ \,’l / XE

2007

2008
2009
2010

2011

2012

2013

2014

— Mostly published in geography/GIS and
transportation journals

— Initially focused on commuting, later various
applications

— Direct demand models

— Mostly focused on simple MLPs
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= Branch B

— Mostly published in data science journals

— Initially focused on taxi/TNC, shifted to
transit trips

Direct demand models

Initially focused on simple MLPs, later
incorporated more advanced methods
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C11

= Branch C

80% published in data science journals

Initially focused on taxi/TNC, later also
social POI

Singly constrained models

Initially proposed RNNSs, later CNN:s,
NLP, Attention, but no GNNs
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0 m " Branch D

2016 | — Published in transportation
l journals

2017 N D2 — Focused on taxi/TNC trips

—r ' — Direct demand models

2019

— Just RNN and CNN variations
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20— Over 90% in data science journals m
,{ — Focused on social POIs —

— Singly constrained models ‘-H E /
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2015

q' Branch F

2016

//\ — Published in data science journals

2017

?/ g — Focused on social POls

— Singly constrained models
— Initially GNN variants, then RNN
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Direct demand models
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