

Modeling Ride-Hailing Demand for Any Census Tract in the United States Using Open Data: Validation and Application to Autonomous Vehicles in Rural Kentucky

Neeco Beltran, Greg Erhardt, Ramtin Seyedmatin

University of Kentucky

September 15, 2025

What is the use-case for autonomous vehicle ride-hailing in rural communities?

What is the use-case for autonomous vehicle ride-hailing in rural communities?

- Nationally, 4% of rural residents (4.3 million people) and 6% of rural households don't have access to a car, with these households being most common in the southeastern United States^{1,2}.

¹Smart Growth America. (2023). An Active Roadmap: Best Practices in Rural Mobility.

²Wang, W., S. Espeland, J. M. Barajas, and D. Rowangould. Rural–Nonrural Divide in Car Access and Unmet Travel Need in the United States. *Transportation*, Vol. 52, No. 2, 2025, pp. 507–536.

³Ashkrof, P., G. Homem De Almeida Correia, O. Cats, and B. Van Arem. Ride Acceptance Behaviour of Ride-Sourcing Drivers. *Transportation Research Part C: Emerging Technologies*, Vol. 142, 2022, p. 103783

What is the use-case for autonomous vehicle ride-hailing in rural communities?

- Nationally, 4% of rural residents (4.3 million people) and 6% of rural households don't have access to a car, with these households being most common in the southeastern United States^{1,2}.
- Access to transportation needed for work, groceries, doctor's appointments, etc.

¹Smart Growth America. (2023). An Active Roadmap: Best Practices in Rural Mobility.

²Wang, W., S. Espeland, J. M. Barajas, and D. Rowangould. Rural–Nonrural Divide in Car Access and Unmet Travel Need in the United States. *Transportation*, Vol. 52, No. 2, 2025, pp. 507–536.

³Ashkrof, P., G. Homem De Almeida Correia, O. Cats, and B. Van Arem. Ride Acceptance Behaviour of Ride-Sourcing Drivers. *Transportation Research Part C: Emerging Technologies*, Vol. 142, 2022, p. 103783

What is the use-case for autonomous vehicle ride-hailing in rural communities?

- Nationally, 4% of rural residents (4.3 million people) and 6% of rural households don't have access to a car, with these households being most common in the southeastern United States^{1,2}.
- Access to transportation needed for work, groceries, doctor's appointments, etc.
 - Taxi and TNC drivers are more likely to decline a trip the greater the travel time is between their current location and the rider's pickup location³.

¹Smart Growth America. (2023). An Active Roadmap: Best Practices in Rural Mobility.

²Wang, W., S. Espeland, J. M. Barajas, and D. Rowangould. Rural–Nonrural Divide in Car Access and Unmet Travel Need in the United States. *Transportation*, Vol. 52, No. 2, 2025, pp. 507–536.

³Ashkrof, P., G. Homem De Almeida Correia, O. Cats, and B. Van Arem. Ride Acceptance Behaviour of Ride-Sourcing Drivers. *Transportation Research Part C: Emerging Technologies*, Vol. 142, 2022, p. 103783

What is the use-case for autonomous vehicle ride-hailing in rural communities?

- Nationally, 4% of rural residents (4.3 million people) and 6% of rural households don't have access to a car, with these households being most common in the southeastern United States^{1,2}.
- Access to transportation needed for work, groceries, doctor's appointments, etc.
 - Taxi and TNC drivers are more likely to decline a trip the greater the travel time is between their current location and the rider's pickup location³.
 - Sparse and dispersed population makes operation of full-fledged transit system challenging.

¹Smart Growth America. (2023). An Active Roadmap: Best Practices in Rural Mobility.

²Wang, W., S. Espeland, J. M. Barajas, and D. Rowangould. Rural–Nonrural Divide in Car Access and Unmet Travel Need in the United States. *Transportation*, Vol. 52, No. 2, 2025, pp. 507–536.

³Ashkrof, P., G. Homem De Almeida Correia, O. Cats, and B. Van Arem. Ride Acceptance Behaviour of Ride-Sourcing Drivers. *Transportation Research Part C: Emerging Technologies*, Vol. 142, 2022, p. 103783

What is the use-case for autonomous vehicle ride-hailing in rural communities?

- Nationally, 4% of rural residents (4.3 million people) and 6% of rural households don't have access to a car, with these households being most common in the southeastern United States^{1,2}.
- Access to transportation needed for work, groceries, doctor's appointments, etc.
 - Taxi and TNC drivers are more likely to decline a trip the greater the travel time is between their current location and the rider's pickup location³.
 - Sparse and dispersed population makes operation of full-fledged transit system challenging.
- **Autonomous vehicle ride-hailing services could fill this gap.**

¹Smart Growth America. (2023). An Active Roadmap: Best Practices in Rural Mobility.

²Wang, W., S. Espeland, J. M. Barajas, and D. Rowangould. Rural–Nonrural Divide in Car Access and Unmet Travel Need in the United States. *Transportation*, Vol. 52, No. 2, 2025, pp. 507–536.

³Ashkrof, P., G. Homem De Almeida Correia, O. Cats, and B. Van Arem. Ride Acceptance Behaviour of Ride-Sourcing Drivers. *Transportation Research Part C: Emerging Technologies*, Vol. 142, 2022, p. 103783

Autonomous vehicles have the potential to be cheaper.

- Traditional Ride-Hailing

Autonomous vehicles have the potential to be cheaper.

- Traditional Ride-Hailing
 - $Cost \sim f(Vehicle, Fuel, Labor, Demand)$

Autonomous vehicles have the potential to be cheaper.

- Traditional Ride-Hailing
 - $Cost \sim f(Vehicle, Fuel, Labor, Demand)$
 - $Demand \sim f(Cost, Travel\ Time, Population, Employment)$

Autonomous vehicles have the potential to be cheaper.

- Traditional Ride-Hailing
 - $Cost \sim f(Vehicle, Fuel, Labor, Demand)$
 - $Demand \sim f(Cost, Travel Time, Population, Employment)$
- AV ride-hailing reduce the cost of labor, but other costs remain. How does this balance out?

Applying an existing demand model out-of-sample.

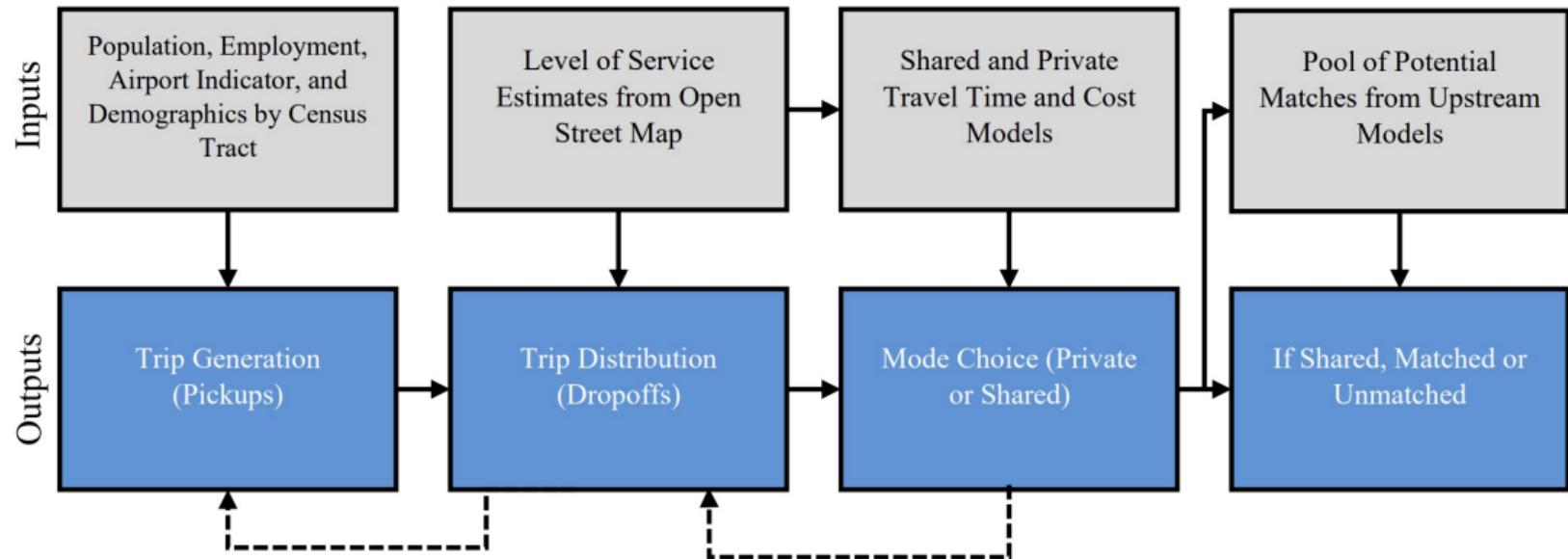
- We apply an existing TNC demand model developed for Chicago⁴ (base year 2019) out-of-sample, **with the idea that TNC ride-hailing and AV ride-hailing are substitutes.**

⁴Mucci, R. (2024) A 3-Step, Open-Data, Ride-Hailing Ridership Model with Pricing Applications. PhD Thesis. University of Kentucky

Applying an existing demand model out-of-sample.

- We apply an existing TNC demand model developed for Chicago⁴ (base year 2019) out-of-sample, **with the idea that TNC ride-hailing and AV ride-hailing are substitutes.**
- All inputs are **publicly available**: American Community Survey, Longitudinal Employer-Household Dynamics, Census Transportation Planning Product, and Open Street Map

⁴Mucci, R. (2024) A 3-Step, Open-Data, Ride-Hailing Ridership Model with Pricing Applications. PhD Thesis. University of Kentucky


Applying an existing demand model out-of-sample.

- We apply an existing TNC demand model developed for Chicago⁴ (base year 2019) out-of-sample, **with the idea that TNC ride-hailing and AV ride-hailing are substitutes.**
- All inputs are **publicly available**: American Community Survey, Longitudinal Employer-Household Dynamics, Census Transportation Planning Product, and Open Street Map
- Outputs: ride-hailing demand for an average weekday by Census tract, broken out by private and shared (matched/unmatched) demand.

⁴Mucci, R. (2024) A 3-Step, Open-Data, Ride-Hailing Ridership Model with Pricing Applications. PhD Thesis. University of Kentucky

Model Flowchart

Model Validation Using Observed Massachusetts Data

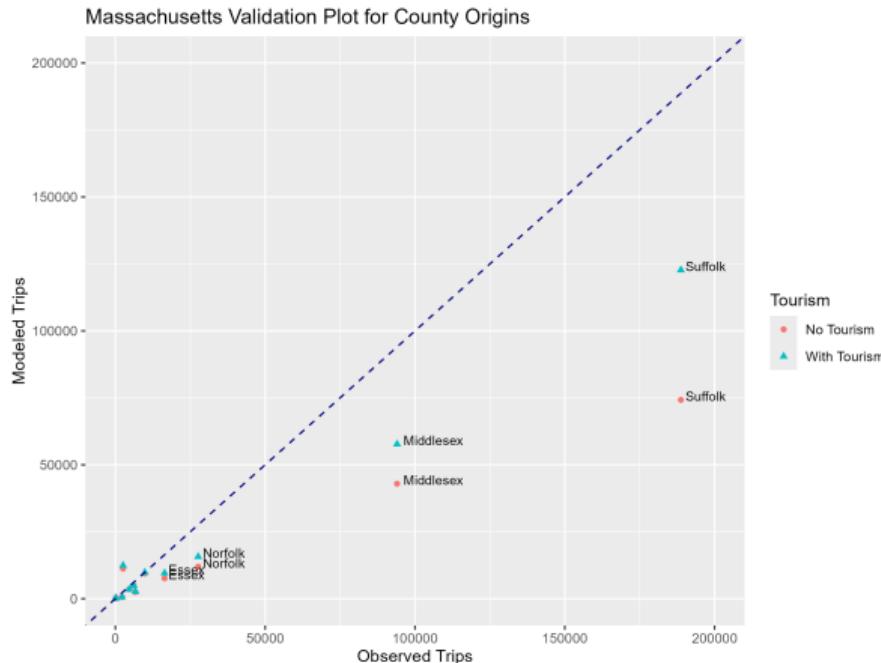
- The Massachusetts Department of Public Utilities collects observed TNC ridership by city.

Model Validation Using Observed Massachusetts Data

- The Massachusetts Department of Public Utilities collects observed TNC ridership by city.
- Massachusetts cities nest perfectly into counties and Census tracts nest perfectly into counties, so validation is done at the county level.

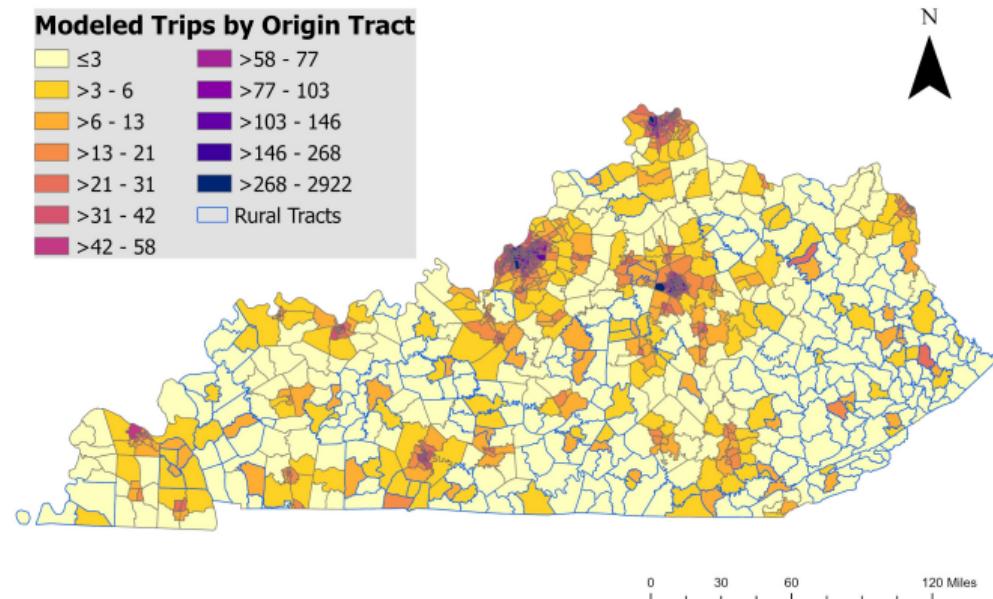
Model Validation Using Observed Massachusetts Data

- The Massachusetts Department of Public Utilities collects observed TNC ridership by city.
- Massachusetts cities nest perfectly into counties and Census tracts nest perfectly into counties, so validation is done at the county level.
- The original Chicago model accounts for tracts with tourist attractions (Navy Pier and Millennium Park), but rural areas generally don't have large tourist attractions like Chicago.


Model Validation Using Observed Massachusetts Data

- The Massachusetts Department of Public Utilities collects observed TNC ridership by city.
- Massachusetts cities nest perfectly into counties and Census tracts nest perfectly into counties, so validation is done at the county level.
- The original Chicago model accounts for tracts with tourist attractions (Navy Pier and Millennium Park), but rural areas generally don't have large tourist attractions like Chicago.
 - Two model runs were done to test the effects of tourism in Massachusetts.

Model Validation Using Observed Massachusetts Data


- The Massachusetts Department of Public Utilities collects observed TNC ridership by city.
- Massachusetts cities nest perfectly into counties and Census tracts nest perfectly into counties, so validation is done at the county level.
- The original Chicago model accounts for tracts with tourist attractions (Navy Pier and Millennium Park), but rural areas generally don't have large tourist attractions like Chicago.
 - Two model runs were done to test the effects of tourism in Massachusetts.
 - Tourism areas: Boston Common and Downtown Salem.

We have assurance that the model can be applied out-of-sample to rural areas.

County	Modeled Trips from Origin (No Tourism)	Modeled Trips from Origin (With Tourism)	Observed Trips from Origin
Barnstable	11,226	12,438	2,565
Berkshire	332	332	215
Bristol	3,539	3,559	4,618
Essex	7,625	9,586	16,407
Franklin	120	120	55
Hampden	4,865	4,865	6,127
Hampshire	628	628	2,231
Middlesex	42,946	57,692	94,022
Norfolk	11,953	15,692	27,640
Plymouth	2,490	2,671	6,700
Suffolk	74,246	122,726	188,754
Worcester	9,397	9,818	9,821

In the baseline scenario, 31,560 trips originate from non-rural tracts and 759 trips originate from rural tracts⁵.

⁵We use the US Department of Agriculture's Rural-Urban Commuting Codes to classify tracts as rural or non-rural.

As fares decrease, demand increases.

- Two additional scenarios: half-fare and quarter-fare.

As fares decrease, demand increases.

- Two additional scenarios: half-fare and quarter-fare.
 - Recall: AV ride-hailing has the potential to be cheaper than driver-based ride-hailing.

As fares decrease, demand increases.

- Two additional scenarios: half-fare and quarter-fare.
 - Recall: AV ride-hailing has the potential to be cheaper than driver-based ride-hailing.
 - Demonstrate price sensitivity.

As fares decrease, demand increases.

- Two additional scenarios: half-fare and quarter-fare.
 - Recall: AV ride-hailing has the potential to be cheaper than driver-based ride-hailing.
 - Demonstrate price sensitivity.

State: Kentucky	Baseline	Half-Fare	Quarter-Fare
Total Rides	32,319	46,555	58,459
<i>Non-Rural Origin</i>	31,560	45,502	57,090
<i>Rural Origin</i>	759	1,052	1,369
Private Rides	17,647	28,700	39,120
<i>Non-Rural Origin</i>	17,141	28,016	38,220
<i>Rural Origin</i>	506	684	900
Matched Rides	12,292	16,497	17,849
<i>Non-Rural Origin</i>	12,143	16,189	17,442
<i>Rural Origin</i>	149	308	407
Unmatched Rides	2,381	1,359	1,490
<i>Non-Rural Origin</i>	2,277	1,298	1,428
<i>Rural Origin</i>	104	61	62
Average trip-weighted average fare (rides ≤ 1 hour)			
<i>Private</i>	\$8.88	\$5.31	\$2.99
<i>Shared</i>	\$8.01	\$4.28	\$2.27
Total Fare Revenue	\$799,231	\$520,486	\$325,710
<i>Non-Rural Origin</i>	\$795,240	\$515,651	\$321,207
<i>Rural Origin</i>	\$3,991	\$4,835	\$4,503

Note: components might not sum to totals due to rounding.

This model benefits policymakers and practitioners.

- **It's open-source!** End-users can estimate ride-hailing demand as a function of publicly available data in their states/jurisdictions.

This model benefits policymakers and practitioners.

- **It's open-source!** End-users can estimate ride-hailing demand as a function of publicly available data in their states/jurisdictions.
- Provides the necessary outputs to complement supply-side models such as FleetPy, which is of use to anyone who wants to do driver simulations.

This model benefits policymakers and practitioners.

- **It's open-source!** End-users can estimate ride-hailing demand as a function of publicly available data in their states/jurisdictions.
- Provides the necessary outputs to complement supply-side models such as FleetPy, which is of use to anyone who wants to do driver simulations.
- In addition to testing fare sensitivity, end-users can also make changes to other model inputs (including but not limited to employment density, employment type, and/or vehicle ownership by income) to see how ride-hailing demand is affected.

Model limitations.

- Out-of-sample application from Chicago to rural areas.

Model limitations.

- Out-of-sample application from Chicago to rural areas.
 - Density: Chicago includes a range of densities, but rural densities are less than anything found in Chicago.

Model limitations.

- Out-of-sample application from Chicago to rural areas.
 - Density: Chicago includes a range of densities, but rural densities are less than anything found in Chicago.
 - But the alternative is knowing nothing because we have no data.

Model limitations.

- Out-of-sample application from Chicago to rural areas.
 - Density: Chicago includes a range of densities, but rural densities are less than anything found in Chicago.
 - But the alternative is knowing nothing because we have no data.
- Analysis is performed within-state, which omits trips that cross state lines.

Main takeaway: autonomous vehicle ride-hailing has the potential to reduce transportation barriers in rural communities.

- 6% of rural households don't have access to a car, with these households being most common in the southeastern United States¹.

¹Smart Growth America. (2023). An Active Roadmap: Best Practices in Rural Mobility.

Main takeaway: autonomous vehicle ride-hailing has the potential to reduce transportation barriers in rural communities.

- 6% of rural households don't have access to a car, with these households being most common in the southeastern United States¹.
- While our model shows that rural demand is quite low (roughly 2% across all scenarios), this opens the door for a funding mechanism where non-rural riders subsidize rural riders.

¹Smart Growth America. (2023). An Active Roadmap: Best Practices in Rural Mobility.

Main takeaway: autonomous vehicle ride-hailing has the potential to reduce transportation barriers in rural communities.

- 6% of rural households don't have access to a car, with these households being most common in the southeastern United States¹.
- While our model shows that rural demand is quite low (roughly 2% across all scenarios), this opens the door for a funding mechanism where non-rural riders subsidize rural riders.
 - Baseline scenario: 31,560 ride-hailing trips come from non-rural tracts and fare revenue from trips originating in rural tracts being is \$3,991.

¹Smart Growth America. (2023). An Active Roadmap: Best Practices in Rural Mobility.

Main takeaway: autonomous vehicle ride-hailing has the potential to reduce transportation barriers in rural communities.

- 6% of rural households don't have access to a car, with these households being most common in the southeastern United States¹.
- While our model shows that rural demand is quite low (roughly 2% across all scenarios), this opens the door for a funding mechanism where non-rural riders subsidize rural riders.
 - Baseline scenario: 31,560 ride-hailing trips come from non-rural tracts and fare revenue from trips originating in rural tracts being is \$3,991.
 - Non-rural ride-hailers could be taxed \$0.126 per ride ($\$3,991 \div 31,560$) to cover rural riders' fares.

¹Smart Growth America. (2023). An Active Roadmap: Best Practices in Rural Mobility.