Atlanta Regional
Commission (ARC)
ActivitySim Implementation
Update



Introduction

ARC 21-county modeling domain:
= 6,400 sq. mi.
= 6,000,000+ population

= ARC is 1 of the 3 Founding Agencies of ActivitySim with MTC and
SANDAG Going Back Over a Decade Ago

Acknowledgements:
= Sijia Wang and the WSP team
= Jeff Newman, Driftless Lab



History of ActivitySim at ARC

Why ActivitySim?: Replace ARC’s CT-RAMP Java-Based
ABM Software with ActivitySim Python-Based Software

2019: ARC'’s first ActivitySim v0.9.7 Implementation
= Parking location choice sub-model
= |ogit-based trip scheduling choice sub-model
= With legacy “chunking” training: 15+ hours to simulate all travel choices

Lessons learned:

= Runnable but not practical as a production model due to:
- Large memory requirements
- Long model run times



From ActivitySim v0.9.7 to v1.3.0

Goal: Implement 50% Runtime and Memory Relief Saving

Sharrow (yes it works):
= open-source Python package
= extension of Numba

= offers data formatting and just-in-time compiler to convert ActivitySim
spec files into optimized functions

= Compile ActivitySim UECs only once, re-use many times
Data type optimization| reduce memory, speed up process

= Convert string data into “pandas” categorical data
= Conversion for string columns in most chooser table



From v0.9.7 to v1.3.0 (continued)

Explicit chunking:
= No training to find optimal number of choice makers for each sub-model

= Allows users to specify either:
- Aninteger valuer as the number of choice makers, or

- Afractional value as the proportion of choice makers to simulate for each sub-
model in each chunk

» Provides greater stability in ARC’s ActivitySim model implementation
= Removes the additional overhead required to train the legacy chunking

= Explicit chunking implemented in ARC’s ActivitySim implementation for
memory intensive sub-models: Workplace Location, School Location,
Mandatory Tour Scheduling, Non-Mandatory Tour Schedullng Trip
Destination, Parking Location



ARC’s ActivitySim v1.3.0 model

ARC’s v1.3.0 ActivitySim model implementation testing:
= Set up with GitHub Actions to run Continuous Integration testing
= Model runtime performance analysis using Fulton County sub-model:

- Multiprocessing without Sharrow
- Multiprocessing with Sharrow

= ARC ran into the “Law of Diminishing Returns”:
- Runtime savings with more processors diminished
- Diminishing returns when increasing the number of processors
- More testing needed to discover the “sweet spot” (optimal efficiency)

= atlregional/arc-activitysim: ARC ActivitySim implementation
= https://qgithub.com/atlregional/arc-activitysim



https://github.com/atlregional/arc-activitysim
https://github.com/atlregional/arc-activitysim

ARC’s ActivitySim Implementation Fuli

Scale Model Runtime Testing

Single Processor, Large (100,000 households) with Skims and
ARC Land Use Data

= Sharrow Enabled: 26.8 minutes

= Sharrow Disabled: 64.5 minutes

Multiprocessing, Full Scale, 100% Sample of Households
= Sharrow Enabled: 113 minutes
= Sharrow Disables: 200 minutes

Running the Model with Sharrow Enabled Offers ARC
Substantial Runtime Benefits with no Meaningful Change in
Simulation Results



ARC’s ActivitySim Model Results
Visualization with SimWrapper




ActivitySim at ARC: The Future...

ARC'’s ActivitySim model is one step closer to becoming
ARC'’s next production model in late 2026 or early 2027

Update ARC’s ActivitySim specs to reflect recent updates
to ARC’s CT-RAMP model.

Update ARC’s ActivitySim implementation 2015 baseline
ARC’s CT-RAMP model baseline: Pre-Pandemic (2019-20)
ARC’s household travel survey in 2026 (last one in 2011)

Update ARC’s ActivitySim model to the latest and greatest
ActivitySim version



Thank You! Any Questions?

Guy Rousseau

Modeling Manager / Data Administrator
Atlanta Regional Commission, Atlanta, Georgia
grousseau@atlantaregional.org



mailto:grousseau@atlantaregional.org

