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Preview

* We can avoid throwing away panel data by using all the information we
have

* We can do so on our own terms
* Learn through proximity
* Trade oft individual and global data trajectories

* Build in uncertainty naturally
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Data and Motivation

* Regional Transportation Authority

* Oversees transit agencies in the greater Chicago area
* Multiple waves of an RTA customer panel survey
* 3,617 unique respondents
* But only 464 complete cases (12.8%)

* Outcome variable: overall satisfaction with the Chicago-area transit
service in each wave
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Complete-case analysis
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Attrition is related to

low satisfaction



Imputation Model

Posterior Likelihood Priors
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p(y™s|6,¢)

*'Take advantage of the hierarchical and temporal
structure

*[earn from nearby observations:
* Observed values at the same time from different
people
* Observed values at different times within the same
person

* Be flexible
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p( y™is | g, ¢ ): learn from nearby observations
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Demonstration
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Imputation examples
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Imputation examples — validation
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Benefits and Drawbacks

* Don’t need to rely on complete-case data for modeling panel data
* Naturally captures uncertainty in estimates and predictions
* Flexible to different trajectory shapes

* General: can be used to imputed multiple types ot variables in the
same model

* But...

* Relies on our distributional assumptions for the missing data,
p(y™16,¢)

* However, we can test our model with posterior predictive checks and
holdout samples

* Doesn’t inform us about the reasons for data missingness
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Thank youl

Spencer Aeschliman: spencer.aeschliman@northwestern.edu

Amanda Stathopoulos: a-stathopoulos@northwestern.edu

This presentation is based on work supported by the NS GREP grant no. DGE-2234667
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Bonus Slides
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Some options

* Complete case analysis Inference with Imputed Data:

* Poststratification The Allure of Making Stutf Up

* Imputation

° EXphCit selection mo deling Charles F. MaIlSkl, Northwestern University

o A COmbiﬁatiOﬁ of the above Submitted October 28, 2022; Accepted August 1, 2023.

Journal of Labor Economics, volume 43, number S1, April 2025.
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Participation modeling

* At each given time, potential respondent has probability of answering or

declining
* Could model answering as a repeated binary choice (See Hensher, 1987)

* Or: model attrition as a time-to-event (“survival”)

 Or: both

X A N
D SNy D Snnmnnnnnady D sy D

9/16/25 Spencer Aeschliman — Modeling Mobility 2025 18



Hierarchical Choice Model Framing

* Let declining be the reference

* Standard RUM framing: U;y = B;X;+ + &+, where & ~;;q4 Gumbel

Likelihood: 1 -Iﬁ-)=1_[( . >
1kelithood: DPilYi | bi t 1+ exp(B.Xy)

1
Posterior:  pB.ntiv) =] || ] (1 e X,t))p(ﬁi | )PP
it et
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Logit kernel Mixing distribution
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Choice parameters

[, (participation until t)4

B (rolling satisfaction)
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Density

Survival model parameters
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Hierarchical MOdel Vi¢- Person 7’s satisfaction at

| time 7
i M;;: Linear model for

Vie ~ N(my, o)

satisfaction
m;; = a; + 0;t + Z BrXitk a;: Individual (varying)
k | intercept :
a; ~ N(Hq, 7o) ' 8;: Individual (varying) slope |
0; ~ N(us, 75) ; (on Zime) |
fi~ N(O, 1)  priors0 o cocticenss |
D r icien :
o ~ logNormal(0, 1) , k]

Ko Us ~ N(O) 1)

Hyper-priors,
Ta, Ts ~ logNormal(0, 1) yper-priors, ¢

p@¢ 1) < | || |p(e I me;0,6)p(0 1 6)p(9)
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Hierarchical Model
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Adding Explicit Temporal Dependence

Covariance function, k(tg, t,) - ‘® -
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(Gaussian Process

p( 6,0, y™ | yors ) o p(yoP5 16,0 )p(y™S | 0,¢ )p(6 | d)p(d)

Now:
yims | yobs 9, ¢ ~ N(my + fF(¥?P5), 0)

f(?P) ~ GP(0,K)

1
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Full Model
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Imputation Model
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Imputing Covariates
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