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ﬁ This rise is mainly attributed to an increase in
Passenger cars vehicle miles traveled by passenger cars and

Medium- and and light-duty trucks all truck types.
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Increasing Clean
Mode shift vehicles'’ vehicle
occupancy  Alternatives

Travel Route/time
reduction optimization




Behavioral Interventions 1o Promote
Clean Transportation

Clean
vehicle
Alternatives




Problem:

Clean Alternatives are Expensive

Battery Electric
Vehicles (BEVs)

Hybrid Electric
Vehicles (HEVs)
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Plug-in Hybrid
Electric Vehicles

k- .

T‘ | >

Fuel-cell Electric
Vehicles (FCEVs)
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Credits

Discounts

Tax reductions

Rebates
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What Types
of Data We
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Issued Rebates for BEV and PHEV
2012 — 2023

From:
Rebate

Cl EAN VEHICLE Participation
REBATE PROJECT” Rate

Total reqgistered
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Average Rebate
Participation Rates across
counties in California

BEV




Data Sources
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Bureau California N
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National Transit Database

Public transit service Number of EV charging
and operation stations




What Was the
Analysis
Approache




To understand rebate
participation patterns in
different context and locations




Phase One

« Applied Dynamic Time Warping (DTW)
to capture temporal patterns in
rebate participation.
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« Grouped counties using K-Means
clustering, an unsupervised learning
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Demographic Factors

* Less diversity

Cluster 1 @ + Older population
 |lower educated people

* High diversity
Cluster 3 @ - Younger population
« Higher educated people
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Cluster 1 @

Cluster 3 @

Demographic Factors

Low personal income and GDP
Small labor force participation
Highest unemployment rate

High personal income and GDP
Large labor force participation
Lowest unemployment rate
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Cluster 1 @

Cluster 3 @

Land-Use Factors

The most rural with large % of
agricultural and farmland

The most urban with large % of
developed and bvilt-up land
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Infrastructural Factors

 Few charging stations and low-
Cluster 1 @ capacity transit network

 The best transportation infrastructure, well
Cluster 3 '
v ® developed transit network with high
charging station number



Phase Two

rebate participation
with historical data




Phase Two

* Bullf Random Forest model to predict
county-level rebate participation.

» |ncorporated demographic, economic,
and use, and infrastructural features.




What did we
finde




 Accuracy: 78%

Random Forest Model Results

* Influencing factors: demographic
factors such as race, foreign-born share,

and education
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Conclusion

Counties show distinct
EV rebate participation
patierns over time.

Rural, older, and lower-
income counties face
persistent barriers
despite rebates.

Higher adoption is tied
to stronger economies,
higher education, racial
diversity, and urban
infrastructure.

Targeted infrasiructure,
financial support, and
outreach are more
effective than uniform
statewide incentives.



Study Importance

Shows how advanced
fechnigues can guide
more targeted, data-
driven policy planning
beyond uniform
statewide approaches.



Next steps

Integrate post-2023 data to
capture the influence of
emerging technologies,
policies, and funding
structures on EV adoption




Thank you!

Questions?

Contact:

HMmm5265@psu.edu
LinkedIn: @heli-mohamadi
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