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Why a New Framework?

1. Data Explosion

Detectors, GPS, smartcards, connected
vehicles, and large-scale surveys.

2. Computing & Machine Learning
Power

Modern GPUs, parallel computing, and Al
techniques enable new modeling
approaches.
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Why a New Framework?

3. New Models & Strategies

- Traditional analytical models vs. New data-driven frameworks. Chl,la;jé?: !
* From simple trip-based methods — activity-based and tour-
based — toward graph- and tensor-based extensions. DaI;t/?-dDrilven
odels
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Why a New Framework?

4. Integration Challenge : . i a
* Macro vs. Meso vs. Micro levels.
(a) macroscopic network (b) mesoscopic network
 Existing models don't link across 0
levels — need a new framework. 1 i
« Scalable, data-driven systems are ¥
required to unify models and leverage = sEssiisiiiiiiaiiaie
diverse data effectively. AR

(c) microscopic network
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QoD flows fp
Contents lists available at ScienceDirect

Artificial Intelligence for Transportation

SEVIER journal homepage: www.elsevier.com/locate/ait

Flow-through tensors: A unified computational graph architecture for
multi-layer transportation network optimization
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Flow-Through-Tensor (FTT) framework, a data—driven; end-t

architecture designed for complex transportation systems.
Scan for full paper

100006. https://doi.org/10.1016/j.ait.2025.100006
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Flow-Through Tensors Computational Framework
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Preview of Tensor-Based Representation of Flows

Volume Delay

l | Function

f oD fp fL tL 1--'P tOD
OD volume Path flow Link flow Link travel time Path travel time OD travel time

1x4 1X5 1x3 1x3 1X5 1x4
1\ v J \ v J
%l Arizona State Flow Assignment OD Travel Time Estimation
University Source: ASU Trans+Al Lab






Transportation Network Modeling: FTT and Traffic Assignment

OO0 Mapping Matrices and Vectors

Matrix APL — {apl}
Vector fp=(--,f,,-)"
Entry a,, - value of path p and link [

OD pairs: (1,3), (1,4), (2,3), (2,4)
Links: a, b, ¢ (other links are ignored)
Paths:

Path OD Traversed Nodes
Py 1(,3) |1-5-6-3
P, 1(14) |1-5-64
P, (2,3) | 2-5-6-3
P, 2,4) |2-5-6-4
Ps 124 |24

Traffic Assignment

This example demonstrates how to integrate origin-
destination (OD) matrices, path flows, and link flows
using tensors to complete the traffic assignment task.
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Transportation Network Modeling: FTT and Route Choice

0 Route Choice

» CG representation of choice model

Calculate OD-path choice probability o i (B:t)

based on the Logit model Qod,p = Z ES
e'u’ oa,p 1 ¥p

.P'EP,

8,t,) the utility that a traveler of OD pair w will
"’ choose path p.

Uod,p(

3 the pre-carlibrated parameter vector that
represents the traveler preference.

the travel time of path p, a function of f; with
the consideration of the congestion effect.

» Integrated into FTT

¢

p

9

* The logit model is a widely used choice model for travelers
behavior. In existing research, it i1s often embedded within
optimization models.

* FTT also supports the embedding of the logit model.
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Transportation Network Modeling: FTT and Tour-Based Modeling
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(b) The location of activities

Reference: Mahmoudi, M., Tong, L. (Carol), Garikapati, V. M., Pendyala, R. M., & Zhou, X. (2021). How many trip requests could we

support? an activity-travel based vehicle scheduling approach. Transportation Research Part C: Emerging Technologies, 128, 103222.
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Transportation Network Modeling: FTT and Multimodal Coordination

OD volume Path flow Link flow Link travel time Path travel time OD travel time
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Coupling Constraints
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Total travel cost
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() Forward Computation — Optimization Objective

Backward Computation — Decision Update

Cost Tensor
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Traffic System State Estimation

State Representation
@000 [ oop detector a Probe vehicle ) Bluetooth I:l Video detector coverage area
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time
e e
3’\ discharge rate function
<
é \/ﬂ(t) SQaC c
> A J
\ time (CSTD)
(c) Continuous space-time distribution
(b) System-wide arrival and  (a) Physical roads with function of each traffic state
discharge rate functions traffic detectors (e.g., flow, density, speed, net volume)

Construct Functions Based on Partial Observations and Traffic Flow Models

References: Lu, J., Li, C., Wu, X. B., & Zhou, X. S. (2023). Physics-informed neural networks for integrated traffic state and queue profile estimation: A
differentiable programming approach on layered computational graphs. Transportation Research Part C: Emerging Technologies, 153, 104224.
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Traffic System State Estimation

Postmile } »
(ADS) 22 e A 2
T Bo o
A - S e e e m =
/i
e T
P 1 Research area A7 Onmamp N Off ramp = Loop detector

Freeway I880-N in Alameda County, California (postmile 22 to 25). Loop detector data and GPS data
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(a) Speed estimations of the proposed method (b) Speed estimations from PeMS

Source: ASU Trans+Al Lab
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Travel Modeling at a Crossroads

» Traditional: 4-Step models, ABM

» Data-driven: ML/AI methods

» Surveys vs. Big Data

» Rigid structure vs. flexibility, behavior vs.

scalability

TensorFlow \ PYTHLRCH

Source: TensorFlow logo © Google Source: PyTorch logo © Meta Al

Urban Traffic Big Data Sources
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