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WARNING

This presentation contains materials
known by the State of the Art to cause

learning (or re-learning) of calculus
and other pedagogic harms.
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Removed from web version due to uncertain copyright:

John Howard plugging holes in dyke wall with his fingers and toes,
Howard under pressure to reduce rising unemployment figures

Published in the Canberra Times on 12 September 1997
By Australian political cartoonist Geoff Pryor

Available at National Library of Australia:

https://catalogue.nla.gov.au/catalog/4728563


https://catalogue.nla.gov.au/catalog/4728563
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Illustrative Analogue: Best Fit Line

Point xcoord. ycoord.

A 1 1
B 2 3

Equation form:y=mx + b

Best fit &> minimize the sum of squared deviations

L(m,b) = (1 —m—Db)?+ (3 —2m — b)?

the “loss” function
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Coordinate Descent: Iteration 1
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Coordinate Descent: lteration 2
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Coordinate Descent: Iteration 3
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Coordinate Descent: lteration 4




Coordinate Descent: lteration 5
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Coordinate Descent: lteration 6
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Coordinate Descent: Iteration 8




Coordinate Descent: Iteration 9
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Coordinate Descent: lteration 10




Coordinate Descent: Iteration 11
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Coordinate Descent: Iteration 12
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Coordinate Descent: Trace Through Loss Contours
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Differentiation: Multivariable Functions
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Gradient Vector on Loss Contours
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Gradient Descent: Trace Through Loss Contours
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Computational Graph




Automatic Differentiation

L1 U3 Vs
tangent tangent tangent
L =v,

tangent
v: + v, = —14

V4

tangent tangent tangent
dm =0 —2v; = —2

2774774 —_ _12




(Reverse) Automatic Differentiation

V1

adjoint adjoints
oL N
071 — Zv1 = —-14
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adjoints
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) . Brown et al.
Machine Learning GPT-3
Werbos 2020
Linnainmaa |AD for NVIDIA Vaswani et al.
Reverse AD |neuralnets CUDA GPUs Transformer
1970 1982 2006 2017 )
1964 1974 1991 — 2008: 2010 @
Wengert |Werbos World Wide Web, Bergstra et al. —
AD AD for nonlinear SANWENIIELCE | Theano 2018| -
Lowry regression Frostig et al.
Spatial Waddell JAX
interaction 1980s — Now: UrbanSim
. 2020 > Now
1964 1998 Differentiable
1973 1994 SOV UrbanSim
McFadden Wegener .
Multinomial logit Integrated microsim Urbansim
on the cloud

Land Use Forecasting



UrbanSim

T INLN

Accelerator-Oriented Python Domain-Specific Application

* Procedure vectorization * Cloud-based user interface
* Automatic differentiation * Expert engineering support



Editing Variable Definitions

area: datasource("sum_acres"
intercept: jnp.ones _like(area)

sov_time:
skim_matrix(units="mins", suffix="sov")
job_access 30min_sov:
accessibility(sov_time, jobs, 30)

remaining res_capacity:
jnp.clip(res_capacity - res units, 0.0)




Prescribing The Loss Function

Let NMSE (v) =

Then L =

2
2z € zones(vpredicted(Z)_vactual(Z)) /|ZOH€S|

Var(vactual)

NMSE (APrice)/2 + NMSE (ARent) /2

- NMSE(AUnits,y,,)/2 + NMSE(AUNitS,on:) /2
+ NMSE(AHH,,,,,)/2 + NMSE(AHH,.,;)/2
+ 2icincomes NMSE(AHH;) /|incomes|
+ Zsesectors VMSE(AEmpy) /|sectors|

/5



Initializing Model Specification

hclm: # household lLocation choice model
inc_20 30,rent: # marRet segment

ln_job_access 10min _sov: ©0.001
ln_job_access 30min_sov: ©0.001
ln_rent: 0.001
ln_unit: 0.001
prop_high income: 0.001
prop low_income: 0.001

inc_20 30,own:




Calibrated Model Specification

hclm: # household lLocation choice model

inc_20 30,rent: # marRet segment
ln_job_access 10min_sov: -0.2305
ln_job_access 30min_sov: ©0.8257

ln_rent: -0.0961
ln_unit: 0.8860
prop _high income: -3.5290
prop low_income: 0.1627

inc_20 30,own:
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Proposal: Testing Hypotheses with Differentiable UrbanSim

Conjecture:

[f C.im(anu1])= k,

C-*irn(eextended): k+4q,

dim(L)=n — oo, and

errors independent with constant variance over zones

Then CLT & null imply

L(anun) — L(aextended) R XZ(CI)
L(eextended)/(n —k—q)




Proposal: Testing Hypotheses with Differentiable UrbanSim

Example:

dim(0,,)=186 In residential development model,
C.im(@extended)=186 + 2 <= Wash. State indicators—own & rent

dim(L)= 13770

1.0
9" — 0.8
state53,own —
A . > .
HstateSS,rent =7 "5 0.6
¥?=6.000n2 d.f. C 0.4
p = 0.05 T 45
0.0 7, 46



Change in Housing Units by Tract, 2010-2020
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Change in Households by Tract, 2010-2020
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Change in Price by Tract, 2010-2020

Pearson Correlation= 0.32
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Change in Rent by Tract, 2010-2020

Pearson Correlation= -0.23
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Other Improvements, 2024-2025

 Features

B Training

™ Data

User-defined
variables

Parameter sharing &
constraints

NaN avoidance
refactoring

Convergence criteria

Pro Forma capacity
estimates

Historical UGB




Goals & Wish List: 2025—-2026

©® Outputs

# Validation

M Forecast

Better price & rent
prediction

Block & block group
analysis

Hessian PSD?

Robust to
initialization?

Finalize specs
Jurisdictional review

Council adoption
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Questions?

jeffrey.hood@oregonmetro.gov

Arts and events
Garbage and recycling
M et ro Land and transportation oregon mEtrO.gOV

Oregon Zoo

Parks and nature
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