
AI Tools for Programming Analytics Tasks

Vivek Yadav, Cambridge Systematics

SuzanneChildress, MTC

Flavia Tsang, MTC

September 2025

SESSION FLOW

This session will be recorded and summarized by AI.

1. Welcome /Introduction (3 min)
2. Results from TRB Session at ADB50 about AI(Flavia) (5 min)
3. Open Discussion

• (40 minutes) Suzanne
• 30 minutes small groups, 10 minutes report and summarize

4. AI Tools for Code Completion Demo:
• (40 minutes) Vivek
• Github Copilot Demo (30 min), the next step: Agents Demo (10 minutes)

5. Report back from posterboard exercise (Flavia) (2 min)

OPEN DISCUSSION LOGISTICS

1. We split into groups of 3-8 people (you can make your group).

2. We will pass out papers with the questions on them.

3. Each group will report back a set of questions of their choosing – there are

four question sets. Prepare a 2 minute response for the report back.

STICKY DOTS EXERCISE AT TRB 2025

TEAMWORK AND INSTITUTIONS
1. What institutional barriers have you encountered in trying to use AI tools in your
programming work, e.g. budgets, policies? How have you been able to overcome
them?

2. How can you work with a team of people and use AI tools together? What have you
found in your team integration of AI?

3. Have you found good trainings for AI in coding that you can share?

4. How has your team been sharing their experiences and best practices for AI in
coding? Do you have recommendations for teaching and sharing?

SPECIFIC AI TOOLS FOR PROGRAMMING

5. Which AI tools have you been using to do your programming work?

6. Do you have a recommendation for the best AI tools for our programming work?
Why? List each tool you have used and its strengths and weaknesses?

HARD-WON KNOWLEDGE

7. On which of your programming tasks has AI tools been particularly useful and why?
Which tasks has it failed on

8. Have you learned any useful tips and tricks for using AI for programming? What would
you share with a coder who is new to using AI for programming?

9. What bad experiences have you had in using AI for programming? What did you learn
that you would like to share with the field?

THE DARK DOWNSIDES OF AI FOR PROGRAMMING

10. What have you noticed as the downsides resulting from your or your team’s use of
AI? What can you or our field do to mitigate these downsides?

11. What do you fear are some negative outcomes that will result from greater use of
AI in programming in our field?

STICKY DOTS EXERCISE AT TRB 2025

AI TOOLS + CODE ASSISTANCE

CODE COMPLETION v/s CODE GENERATION

Code Completion Code Generation

Goal Helps you write code faster by
suggesting next lines

Writes larger code blocks or scripts
from scratch

How it works Suggests next token/line based on
context

Uses natural language to generate
functional code

Typical Use Filling in loops, arguments, boilerplate "Write a function to group trips by
corridor"

Tools GitHub Copilot, IntelliSense, Tabnine ChatGPT, Claude, Replit Ghostwriter

Scope Local, one-line or block Full function, script, or even a web
app

Input Code as you type Prompts, comments, natural language

WHY USE AI FOR CODE GENERATION

Faster
development

Reduce
boilerplate

code

Encourage
exploration &

iterations

Lowers the
barriers for
non-coders

AI TOOLS

Use Case Notes

GitHub Copilot Code suggestions and completions Embedded in VSCode, great for
Python, SQL, etc.

Amazon Code Whisperer Similar to Copilot AWS integration, strong on cloud
workflows

Tabnine Lightweight code completion Works across many editors,
privacy-focused

ChatGPT Code Interpreter Natural language to code Great for data analysis, file
transformations

OpenAI Functions /
 GPT API Backend automation Auto-generate routes, validation,

parsing logic

LOW CODE NO CODE OPTIONS

Use Case Notes

Microsoft Power BI / Power
Apps Dashboards, app building Configure data filters, maps,

metrics

Alteryx Data prep & modeling Drag-and-drop workflows

Tableau Prep Data cleaning & reshaping Visual interface for data pipelines

Knime / Orange data mining ML & analytics Good for advanced users

JASP Data Analysis & ML Drag and drop workflows, beginner
friendly

GITHUB COPILOT

GITHUB COPILOT ??

• An AI-powered coding assistant developed by GitHub and OpenAI

• Like autocomplete on steroids – suggests full lines, functions, or entire code files.

• Works inside VS Code, JetBrains, or GitHub Codespaces.

• Think of it as pair-programming + AI

Scope of Changes Interaction frequency Developer Canvas

Completion Next few lines Hundreds of
millisecond

VS Code
(Editor)

Chats/Edits Multifile Edits Seconds VS Code
(Chat)

Agent Mode Complete tasks Minutes VS Code
(Chat)

Copilot
coding agent Entire issues Tens of minutes Github.com

FEATURES

GITHUB COPILOT IN WORKING..

• Powered by OpenAI Codex, a large language model trained on billions of lines
of public code (GitHub, StackOverflow, docs)

• Copilot reads your content: comments, file names, and code around the
cursor.

• It suggests code inline as you type – updated in real-time

• It learns from

• Function names

• Comments like “# load CSV and clean nulls”

• Variable names

• Previous files in your workspace

UNDER THE HOOD

LLMs DO these well

Planning and
problem solving

Code generation,
completion and

translation

Knowledge recall
based on pre-

training

Pattern
recognition

UNDER THE HOOD

LLMs DO NOT do these well

Specialized domain
expertise

Real time
data access

Untrained
Knowledge

Perfect
accuracy

UNDER THE HOOD

GitHub Copilot DO these well

General
Knowledge

Programming
languages &

common practices

Documentation and
 GitHub integrations

Code quality
And safety

UNDER THE HOOD

GitHub copilot DO NOT do these well

Original research or
critical thinking

Access to private or
proprietary code

Full context of
private GitHub

repositories

Real time data or
events

COPILOT RESPONSE CYCLE

User Input

Context
Analysis

Understand
User Intent

Generate a
response

Rank & filter
suggestions

Generate
Response

User
Feedback

Refinement

WHY USE COPILOT?

• Faster Development

• Cuts boilerplate time (e.g. reading/writing files, web scraping, APIs)

• Fewer Context Switches

• Stay in the editor – no need to Google every syntax

• Learning While Coding

• Great for junior devs or those learning new languages or libraries

• Supports Many languages

• Python, JavaScript, SQL, R, HTML/CSS, C++, YAML, Markdown, and more

• Great for Data work

• Quickly generate ETL scripts, model templates, SQL queries, etc.

BEST USE CASES OF COPILOT

Code clean up
Auto-fixing legacy

functions

Data Processing
Pandas/Numpy

workflows

SQL Generation
Building queries

from scratch

Testing
Unit test generation

LIMITATIONS & CONSIDERATIONS

• Not always Right

• Copilot may suggest insecure or non-optimal code

• Be Mindful of Sensitive Data

• Don’t accept suggestions that might include leaked code/data

• You’re still the Expert

• Always review, test, and validate its output

HAVE FUN WITH GITHUB COPILOT
GitHub Copilot for VSCode Might Make Coding Easier - Podfeet Podcasts

https://github.com/vivekyadav26/Workshop-Practical-AI-Tools-for-Transportation-Challenges

ADDITIONAL TIPS

• Use descriptive function names and comments

• Think in “intent” (Copilot responds better to what you’re trying to do)

• Accept, edit, or ignore suggestions as needed.

• Combine with GitHub Copilot Chat (for Q&A and debugging)

	Slide 1: AI Tools for Programming Analytics Tasks
	Slide 2
	Slide 3
	Slide 4: Sticky dots exercise at TRB 2025
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Sticky dots exercise at TRB 2025
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

